
Final Project - Test-Time Training with Masked Autoencoders (E)

January 2025
Marc Boëlle and Tess Breton

Project Overview
For this final project, we worked on the paper ”Test-Time
Training with Masked Autoencoders” by Gandelsman et al.
[1]. In this report, we first briefly introduce the problem and
explain the approach developed by the authors. Then, we
present the results of our experiments and finally go though
our online implementation of the method.

Contributions: Tess worked on reproducing ImageNet-C
results and analyzing failure cases, while Marc focused on
understanding the method and implementing the online ver-
sion.

1. Problem
The paper addresses the challenge of generalization under
distribution shifts between the training and test data. In real-
world applications of deep learning, the training and test
distributions often differ. For instance, this can occur with
sensor data, where the sensor’s response may change over
time due to wear and tear. However, most models are frozen
after training. Thus, they need to be robust to any possible
distribution shift (e.g. noise in images) they might encounter
in the test data.
In computer vision, a common solution consists in artifi-
cially broadening the training distribution, e.g. with data
augmentation. Although this technique often improves per-
formance, it requires guessing future distribution shifts. If
the shifts observed were not considered during training,
then the model is likely to perform poorly. In addition, us-
ing data augmentation may degrade performance on specific
distributions.
Another approach used in the paper is test-time training
(TTT), which dynamically adapts the model to each test in-
put.

2. Method
2.1. Test-Time Training

Test-time training aims at improving the robustness of the
model to distribution shifts in the test data, by adapting it
on-the-fly at test time. Yet test inputs do not come with
ground-truth labels. Then, the idea is to guide the adaptation

using a self-supervised task. The self-supervised task needs
to be carefully designed so that it brings useful information
for the main task.
During training, the main task (e.g. classification) and the
self-supervised task are jointly optimized. At test time, the
model adapts to each test input on the self-supervised task,
and then makes a prediction on the main task.

2.2. TTT with Masked Autoencoders

In the paper, the main task is image classification and the
distribution shifts correspond to visual corruptions such as
noise or blur (see Sec. 3.1). The self-supervised task is
image reconstruction with a masked autoencoder (MAE).
Given an input image with masked patches, the MAE aims
at reconstructing the missing patches to recover the original
image.
Regarding the training setup, the autoencoder is first pre-
trained for masked reconstruction on ImageNet-1k. Then,
the classification head is trained with the frozen updated en-
coder. The encoder, decoder and classification head are all
vision transformers.
At test time, the MAE is first updated to minimize the re-
construction loss on the test image considered. The MAE is
trained for a few steps, using batches of random masks on
the same input. Then, the frozen head is used for classifica-
tion, taking as input the features from the updated encoder.
Finally, the weights of the MAE are reset to the pre-trained
version for the next test image.
Figures 6, 7 and 8 in the Supplementary Material provide
visual representations of these different phases.

3. Results on ImageNet-C

3.1. Dataset

ImageNet-C was built from the ImageNet-1k validation set,
with various corruptions applied. Each corruption has 5 lev-
els of intensity and we focused on level 5, the most severe
one. Due to limited resources, we decided to work with
fewer corruptions, and picked gaussian noise, motion blur
and elastic transform shown in Fig. 1.

1

https://github.com/hendrycks/robustness


Figure 1. ImageNet-C corruptions

3.2. Experiments

For our experiments setup, we built on the authors’ code
and pretrained models, but used only 10% of the data due
to limited resources. We kept the same hyperparameters,
except for the test-time training batch size to speed up runs.
We took 32 instead of 128 and even so, making one full pass
through our 5,000 images took 12 hours.
The results obtained on all three corruptions are shown in
Fig. 2. As in the paper, we do get better results with test-
time training, but our accuracies are not as good as the au-
thors’. We suspect that this is due to our smaller batch-size,
which likely affected the quality of our encoded features.

Figure 2. Accuracies of the baseline and TTT-MAE

These results were obtained with 20 TTT steps, but we also
investigated the impact of this number of steps on perfor-
mance. The accuracies obtained at each step for all three
corruptions are displayed in Fig. 3. For each corruption,
the accuracy gradually increases through the steps. It keeps
going up at 20 steps, suggesting that further steps could im-
prove the results.
Another interesting metric to look at is how many times the
prediction changes over the 20 TTT steps. The results ob-
tained are shown in Fig. 4. Notably, the predicted class
never changes through the 20 steps for 62.3% of the im-
ages corrupted with elastic transform, 76.6% with gaussian
noise and 61.6% with motion blur. Hence for a majority
of images, the TTT steps do not impact the prediction. And
when the prediction does change, it is mostly no more than a
few times. Another qualitative observation we made in that
sense is that most of the time, several steps are required to
trigger a change in the prediction. Concrete examples and

Figure 3. TTT-MAE accuracy for each number of steps

visualizations are provided in the Supplementary Material,
in Figures 9 and 10.

Figure 4. Number of prediction changes through the 20 steps

3.3. Failure cases

We saw in the previous section that TTT-MAE considerably
improved classification results on ImageNet-C compared to
the baseline model. Yet there are still many failure cases,
which we also investigate. To understand the failure cases,
we first have to mention some challenges inherent to the
dataset. First, some classes in ImageNet are very similar,
such as different dog breeds. Many images contain multi-
ple objects, making it unclear which one actually represents
the class of the image. In ImageNet-C, severe corruptions
can make classification hard, even for humans. These chal-
lenges are responsible for many of the failure cases that we
observed.
More specifically, we investigate cases in which the baseline
outperforms TTT-MAE. These cases represent less than 2%
of the data, as reported in Tab. 1. Hence, images on which
both the baseline and TTT-MAE fail make up most failure
cases. Examples of both types of failure cases are provided
in the Supplementary Material, in Figures 11, 12 and 13.



Table 1. Failure cases comparison on baseline and TTT-MAE

Metric Elastic Gaussian Motion
TTT-MAE correct
and baseline wrong 13.42% 5.32% 10.66%

TTT-MAE wrong
and baseline correct 1.02% 0.76% 1.78%

4. Online version
In the authors’ method, the weights of the MAE are reset
to the pre-trained version for every test image. The method
is then offline, since it forgets the information learned from
each test input. But in some cases, an online approach that
would not reset the weights could be interesting. This is
notably the case when the distribution shift does not affect
a single test input, but the whole test set. Once again, a
telling example is sensors, whose observations change over
time as a result of gradual deterioration. Thus, we modified
the authors’ code to create an online version of TTT-MAE.
To evaluate its performance, we ran experiments under two
setups: one with a single corruption, and the other with two
different corruptions.

4.1. Single corruption

For the first experiment, we used a single corruption at test
time. For each of the three corruptions, we ran the online
inference on all test images. Since only one corruption type
is encountered at test time, we expect the model to improve
as it processes more images.
To explore the impact of image order on performance, we
tried with both the default class order (where the five images
from each class are seen in a row) and a random order. We
expected the default order to perform slightly better, as the
model processes images by class. The results obtained are
shown in Fig. 5, and the accuracies are reported in Tab. 3 in
the Supplementary Material. As expected, the online model
clearly outperforms the offline version. However, present-
ing the images in the default class order or randomly does
not seem to have a substantial impact on performance.

4.2. Two corruptions

We also studied the performance of the online version in
the presence of two different distribution shifts. Intuitively,
when there are different corruptions, dynamically updating
the model could potentially degrade performance. To ex-
plore this idea, we ran the following experiment. First, we
chose two different corruptions: gaussian noise and elastic
transform. We then split the images evenly and randomly
in two sets, and applied gaussian noise on the first one and
elastic transform on the other. To evaluate the impact of the
order of images, we considered 3 settings: one where all
images with elastic transform come first, one where gaus-

Figure 5. Accuracies of baseline, offline and online TTT-MAE

sian noise comes first, and one with a random order. Note
that within a corruption group, images are shuffled to get rid
of any potential bias due to class order.
The results obtained are reported in Tab. 2. They do not
show any major difference in accuracy. Yet, we noticed that
the accuracy was a little higher for each corruption when
it was processed first at test time. But the differences re-
main very small, and the accuracies are still far above the
offline ones. We also visualized the moving average accu-
racy, shown in the Supplementary Material in Fig. 14.

Table 2. Results of the online training with two corruptions for
different image orders.

Metric Acc.
Elastic

Acc.
Gaussian

Average
Acc.

Elastic first 60.2% 35.1% 47.6%
Gaussian first 60.0% 35.7% 47.8%
Random order 59.4% 35.4% 47.4%

Conclusion
In accordance with the authors’ results, we can conclude
that the TTT-MAE approach outperforms the baseline on
ImageNet-C, at the cost of a longer inference time. More-
over, our online version produced even better results than
the offline method, on both of our experiments.
For further exploration of the impact of the test distribu-
tion’s structure, we suggest considering gradual corruption
shifts. For instance, we could evaluate the performance of
the model when test inputs are corrupted with an increasing
gaussian noise.

References
[1] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A. Efros.

Test-time training with masked autoencoders, 2022. 1



Final Project - Test-Time Training with Masked Autoencoders (E)

Supplementary Material

5. Model Architecture and Training Setup
Figures 6, 7 and 8 provide schematic representations of the training steps presented in Sec. 2.2.

Figure 6. Pre-training of the encoder-decoder for masked image reconstruction on ImageNet-1k

Figure 7. Training of the classification head with a frozen encoder (ViT probing)

Figure 8. Test-time training : classification of the test image using the updated encoder and frozen classification head



6. Success Cases Examples
Figures 9 and 10 provide visual representations of the evolution of the predicted class through the TTT-MAE steps. They
both correspond to images on which TTT-MAE outperforms the baseline. In the first case, the prediction becomes correct in
the first few steps. For the second input, more steps are required to reach the true class.

Figure 9. Example of success case

Figure 10. Example of success case



7. Failure Cases Examples
Figures 11, 12 and 13 show the evolution of the prediction on images on which TTT-MAE fails. In the first two, the baseline
outperforms TTT-MAE. The case of Fig. 12 is less usual, with a prediction oscillating between two different classes. In
Fig. 13, the prediction is always wrong. We guess that it might be because gaussian noise makes the background look like
sand, but this in only hypothetical.

Figure 11. Example of failure case with close prediction

Figure 12. Example of failure case with oscillating prediction

Figure 13. Example of failure case with constant prediction



8. Additional Online Results
Tab. 3 provides the numerical values of the accuracies used to build the histograms in Figures 2 and 5.

Table 3. Accuracies obtained with baseline, offline and online versions

Model Elastic transform Gaussian noise Motion blur
Baseline 31.4% 19.0% 32.1%
TTT-MAE (ours) 43.8% 23.5% 40.9%
TTT-MAE (paper) 50.7% 30.5% 41.9%
TTT-MAE online (no shuffle) 61.6% 46.1% 51.1%
TTT-MAE online (shuffle) 62.02% 43.1% 52.42%

Fig. 14 shows the moving average accuracy with a window size of 300 during our experiment introduced in Sec. 4.2.

Figure 14. Moving average accuracy for the three orders with a window size 300


	. Problem
	. Method
	. Test-Time Training
	. TTT with Masked Autoencoders

	. Results on ImageNet-C
	. Dataset
	. Experiments
	. Failure cases

	. Online version
	. Single corruption
	. Two corruptions

	. Model Architecture and Training Setup
	. Success Cases Examples
	. Failure Cases Examples
	. Additional Online Results

