CHALLENGE MODAL INF473V

Marc Boélle, Tess Breton

1. INTRODUCTION

The challenge aimed at classifying images from a synthetic
dataset containing 48 classes. We were provided with a small
amount of labeled data (15 images per class) and a large pool
of unlabeled data.

Fig. 1. Images from the dataset

Although the labels were not all semantically close to those
from ImageNet, our main strategy was to use Transfer Learn-
ing and finetune a model pretrained on ImageNet.

2. BASIC TRAINING ON LABELED DATA ONLY

2.1. Training results

The first thing we did was train a ResNet50, pretrained on
ImageNet, using labeled data only. As expected, the model
quickly overfits. The best cross-validation accuracy we got is
0.36.

We changed the model, testing models from Timm by freez-
ing all layers except the last fully-connected one (see Table
1). These models also overfit quickly, but some have a bet-
ter validation accuracy than ResNet50. We chose ViT-Base-
Patch32-CLIP for the rest of the study.

Model Best validation accuracy
resnet50 0.3611
volo-d5 0.2986
xcit-large-24-p16 0.3194
vit-base-patch32-clip 0.4097
vit-huge-patch14-clip 0.4375

Table 1. Comparison of validation accuracy for different
models

2.2. Data Augmentation

To try and prevent overfitting on the labeled data, we used
data augmentation during training. We first used PyTorch
RandAugment but soon realized it was too strong for the
model to keep learning properly. We then decided to create
a transform using PyTorch transforms that seemed logical
given the pool of images provided : Color Jitter, Random
Horizontal Flip...

‘bat’ image

Fig. 2. Data Augmentation performed on a "bat’ image

Unfortunately, validation accuracy did not improve when data
augmentation was used, and even decreased. It seems as if
the transformed data was too different for the model to learn
from it. We did not manage to find the right hyperparameters
allowing learning without overfitting.

3. FIXMATCH

To leverage our large pool of unlabeled data, our first idea was
to use FixMatch (see [1]), already presented by several teams
during the previous one-week challenge.

FixMatch consists in using a weakly-augmented version of
an unlabeled image to get a pseudo-label for a strongly-
augmented version of the same image, if the model is con-
fident enough about its prediction. The loss between the
pseudo-label and the prediction of the model on the strongly
transformed image is then added to the usual loss on the
labeled batch (comparing groundtruth label and prediction),
and the model trained using backpropagation.

The goal is to achieve consistency regularization, leveraging
data continuity : two images that are similar should get the
same label.

It is said in [2] that FixMatch can perform well on datasets
such as CIFAR-10, but that it struggles with more realistic
images when the labeled dataset is small. Indeed, we did not
get any major accuracy improvement when using FixMatch :
validation accuracy did not go higher than 0.4.

4. CLIP BY OPENAI

Following the advice of another team, we tried using CLIP
by OpenAl (see [3]) to classify our images. As a zero-shot
model (not trained on any labeled data), it reached an accu-
racy of 0.53.

4.1. Failure case analysis

To understand better the performances of CLIP on our dataset,
we made a heatmap using the train dataset to see on which
classes he did not perform well. As expected, it performs
well on the classes with a clearly interpetable name (’pin-
wheel’), but it struggles more on complex labels (’Salvelinus
fontinalis’ or ’ethyl alcohol’ for instance). Moreover, some
classes often get predicted when they should not ("pinwheel’,
“cupola’, ’vintage’or 'veloute’).

We also noticed that the dataset contains classes with very
similar statements, such as ’toadstool” and ”"Entoloma lividum”,
two types of mushroom, or ’gosling” and ”duckling”. In this
case, images may be predicted in the wrong class.

4.2. Models and prompts

We found out in [4] that CLIP’s performance depended highly
on the prompts it was given. While in our first try we used ’a
photo of a {class}’ as prompts, we managed to get +1 point of
accuracy just by changing it to ’a stylized {class}’. Accuracy
also depends on the model used as image encoder. We got
+2 points of accuracy on the labeled dataset using RN50x64,
but it did not seem meaningful on the test dataset (we did not
improve our Kaggle score).

We then decided to finetune CLIP (freezing all but a few lay-
ers), but it did not work better than the zero-shot version. We
later read in [5] that it could be better to finetune the prompts,
given that CLIP had been trained on 400M+ images. Fine-
tuning the prompts seemed like a good idea but we lost inter-
pretability and it seemed too technical for us, so we decided
not to go any deeper any into it.

5. PSEUDO LABELING USING CLIP

5.1. Basic pseudolabeling

Because of the quick overfit on Timm models when using la-
beled data only, we decided to leverage the predictions made
by CLIP on unlabeled data, since it can be very confident and
accurate. We took a label as groundtruth when its probability

exceeded 0.98. We obtained an average validation accuracy
of 0.517 (see Figure 3).

val_acc

0.6
0.5
0.4
0.3
0.2

0.1

epoch

Fig. 3. Training ViT-Base-Patch32-CLIP on both labeled data
and data pseudo-labeled by CLIP

To make sur that we were not misguided, we used labeled
data to see how accurate CLIP predictions were over our con-
fidence threshold : on the train dataset, the accuracy was 1.0.
Yet it is important to mention that some classes never reached
the threshold, which prevents the model to learn uniformly on
all classes using pseudolabels.

We also struggled to find the right hyperparameters for our
pseudolabeling : we had to choose a batch-size ratio and a
loss ratio between labeled and unlabeled data, a confidence
threshold for pseudo-labeled. We found the threshold partic-
ularly important to avoid confirmation bias (see [6]) : we
want to be confident about the pseudo-labels we accept, but
we also want the threshold to be low enough so that we do
not always accept the same pseudo-labels (we need different
classes to teach the model). We tried different schemes (con-
stant parameters, linear interpolation on epochs) but none of
them seemed to outperform our first shot. We also tried us-
ing the Sweep tool from WeightAndBiases but it did not give
much better results.

5.2. Class-aware confidence threshold

To address the unequal distribution of classes among pseudo-
labels, we tried implementing a method presented in [2] : the
idea is to use a class-aware threshold, adjusting its value to the
proportion of images confidently pseudo-labeled in a particu-
lar class. Using the notations from the paper [2] : 7. the pro-
portion of class c in the dataset, p. the proportion of images
that are confidently labeled into class ¢ among all images, and
7. the confidence threshold on class c.

{ Tt =7l tesign(pt! — o)
Pt = ape+ (1 - a)p®

val_acc
fold 1 =+ fold 1 = fold 1 ** fold 1

« fold 1

= fold 1
0.5

0.4
0.3
0.2

0.1

epoch

Fig. 4. Wandb sweep on labeled and unlabeled batch size,
threshold and loss weights

a and ¢ are hyperparameters, for which we kept the paper’s
values : @ = 0.9 and € = 0.001. Theoretically, this method
would avoid learning too much from preponderant classes,
and would allow for better learning of harder classes. Yet
again it did not give great results on our dataset.

6. USING DIFFERENT MODELS TO MAKE
PREDICTIONS

Since we observed that some classes were very similar and
were sometimes predicted instead of the other, we came up
with the idea of grouping them into a superclass and using
a Mixture of Experts as described in [7]. The principle is as
follows: we use a ”gating network” which redirects to “expert
models” that choose between a fraction of the subclasses.

6.1. Mixture of Experts with CLIP only

Initially, we selected similar classes as superclasses and
grouped them together under a common name. For ex-
ample, we combined “duckling”, ”peahen”, ’gosling” and
“tragopan” into the superclass “bird”. We left the classes

where CLIP didn’t make any errors as is.

Because of the lack of labeled data, we decided to use CLIP
as a gating network, then CLIP again to discriminate within a
superclass.

However, it did not work as well as expected because of the
bias introduced in the choice and name of superclasses. By
comparing the heatmap, we find that grouping into super-
classes has sometimes increased confusion between classes.
Plus, the choice of prompts is very important for CLIP. This
may explain why we only reached an accuracy of 0.5.

6.2. Mixture of Experts with CLIP and a ResNet50 as a
gating network

We had the idea of a second method based on the mixture
of experts: use a binary classifier to separate the classes well

predicted by CLIP from those poorly predicted, then use an-
other type of classifier to differentiate the poorly predicted
classes. We split the dataset into 2: the 9 classes least well
classified by CLIP and the 39 others. For the binary classifier,
we used a resnet50. However, when we trained it, the accu-
racy plateaued at 0.8. We understood that the classifier was
systematically predicting the superclass with the 39 classes,
because this allowed it to obtain such accuracy easily, and
there was no learning involved.

7. CONCLUSION

The conclusion of our work is that none of our models man-
aged to outperform zero-shot CLIP. The complexity of the
dataset made it very hard to leverage unlabeled data confi-
dently. Understanding better each class and its links to other
classes could help identify ways to improve performance.

8. REFERENCES

[1] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin,
Han Zhang, and Colin Raffel, “Fixmatch: Simplify-

ing semi-supervised learning with consistency and con-
fidence,” 2020.

[2] Thomas Lucas, Philippe Weinzaepfel, and Gregory Ro-
gez, “Barely-supervised learning: Semi-supervised
learning with very few labeled images,” 2021.

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever, “Learning transferable vi-
sual models from natural language supervision,” 2021.

[4] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu, “Learning to prompt for vision-language mod-
els,” International Journal of Computer Vision (IJCV),
2022.

[5] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu, “Conditional prompt learning for vision-
language models,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022.

[6] Eric Arazo, Diego Ortego, Paul Albert, Noel E.
O’Connor, and Kevin McGuinness, ‘“Pseudo-labeling
and confirmation bias in deep semi-supervised learning,”
2020.

[7]1 Xiaolei Huang Stephen T.C. Wong John Volpi James Z.
Wang Kelvin Wong Yanglan Ou, Ye Yuan, “Patcher:
Patch transformers with mixture of experts for precise
medical image segmentation,” 2022.

