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Abstract:

Extrachromosomal DNA (ecDNA) is a circular DNA entity often found within cancer cells,
recently identified as playing a potentially crucial role in oncogene amplification. Unlike
chromosomal DNA, ecDNA does not follow equal segregation during cell division, leading to
highly variable copy numbers within a single population. My research project explores ways
of simulating the dynamics of these copy numbers, based on reference data. After testing
different models, we focused on a type of Moran process, adapted to incorporate the random
segregation of ecDNA during cell division. To account for the biological properties of ecDNA,
we introduced different fitness functions based on ecDNA copy number. All these functions
were parameterized by a single selection parameter s, which we estimated using Approximate
Bayesian Computation (ABC). We achieved great similarity between some simulations and our
reference data, but the synthetic testing made us realize that our model’s high stochasticity
was a problem for accurate inference.

Code:

Python code available at: https://github.com/tessbreton/ecDNA

https://github.com/tessbreton/ecDNA
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Introduction

Extrachromosomal DNA (ecDNA) has recently gained significant attention in cancer research,
due to its potential impact on tumor biology and therapy outcomes. Over the past few years,
studies have unveiled the role of these circular DNA molecules in amplifying oncogenes, driving
tumor heterogeneity, and conferring adaptability to cancer cells.

Given these findings, there is a growing interest in developing mathematical models to better
understand and predict the dynamics of ecDNA in cancer cell populations. Since the role
of ecDNA was discovered only recently, few previous works have focused on modeling its
copy number dynamics. Most of the existing mathematical research on the subject remains
relatively simple, and we believe that there is room for improvement regarding the impact of
copy number on selection. More information on the ecDNA literature, both biological and
mathematical, is provided in Section 1.

This research project was based on a single dataset made of the distributions of ecDNA copy
number in a cell line at two different time points, presented in Section 2. Our goal was to
produce simulations that matched this reference data as closely as possible. Specifically, we
aimed to infer a single selection parameter that quantifies the selective advantage conferred
by ecDNA on cell fitness.

To do so, we first explored several models to select the most suitable one. Section 3 outlines
our approach to model ecDNA dynamics, presenting our main assumptions and discussing
the three different models that we considered. Following these preliminary experiments, we
focused on one single model inspired by Moran processes, detailed in Section 4. Our final goal
was then to infer the selection parameter in our data, which we did using an ABC algorithm.
The inference method and results are presented in Section 5.

Lab context: The initial goal of my project was to incorporate ecDNA dynamics into a larger
model called CINner[8], developed by my supervisor and colleagues at the IICD. However,
after reviewing the literature on ecDNA, it became clear that achieving this within reasonable
computation time would not be feasible. Indeed, CINner tracks population evolution by
creating new clones whenever a copy number aberration occurs. Given the random segregation
of ecDNA, this approach would require creating a new clone at almost every cell division, which
undermines the clonal optimization. As a result, we decided that I should focus exclusively
on ecDNA dynamics. I started my own project, which also proved to be more convenient.
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1 Literature review

1.1 Biological features of ecDNA in human cancer

Most of the literature on ecDNA focuses on its biological features and impact on cancer growth.
Several papers[11],[14] review its known properties, focusing on its role in tumor heterogeneity
and oncogene1 amplification. Yet, since ecDNA is a very recent topic2, many of its properties
remain unknown. This is particularly true regarding its formation, for which a few models have
been proposed without experimental confirmation. While we initially wanted to incorporate
the formation of ecDNA into our model, we soon realized that it would not be feasible nor
necessary.

Indeed, most ecDNAs impose a metabolic load on the cell[9], leading to its rapid loss. However,
in rare events, an ecDNA can be formed with a proliferative element such as an oncogene,
providing a selective advantage to the cell. The goal of this project is to model the dynamics
of such ecDNAs, which could have a significant impact on population evolution in the long
term.

Despite the limited understanding of ecDNA, there is a consensus that it plays a potentially
significant role in cancer evolution. First, ecDNA has been identified as a major carrier of
amplified oncogenes[14] and is more accessible than chromosomal DNA, resulting in increased
transcriptional activity. It has also been found in very high copy numbers, leading to significant
overexpression of the genes it carries. Finally, ecDNA molecules often form clusters or hubs[6],
further driving oncogene expression.

All these findings suggest that cells with higher ecDNA copy numbers might have a greater
fitness, meaning a selective advantage over other cells in the population. As to how cells can
reach such high ecDNA counts, recent discoveries indicate that ecDNA copies are randomly
segregated among daughter cells during cell division, leading to high copy number variability.

1.2 Random segregation of ecDNA during cell division

One of the key studies investigating the mathematics behind ecDNA dynamics is presented in
[9]. The main point of this paper was to prove the random segregation of ecDNA in human
cancer cells, with equal probabilities for daughter cells to inherit each copy. Figure 1 shows the
possible outcomes of such segregation, which can result in high copy number heterogeneity.

This randomness can lead to exceptionally high ecDNA counts, which are not reachable
through chromosomal segregation. Given that ecDNA is a major carrier of amplified oncogenes,
this may significantly impact the fitness of the cells, further contributing to cancer progression.

1An oncogene is a gene that has the potential to cause cancer when mutated or overexpressed.
2ecDNA was first known as "double minutes", see [2]
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Figure 1: Possible outcomes of random ecDNA segregation

1.3 A first model for ecDNA dynamics

The first mathematical model found in the literature on ecDNA dynamics is a baseline model
presented in the Supplementary of [9]. The goal of the authors was to make predictions to
determine whether ecDNA is under neutral or positive selection, based on comparisons with
patient and cell line data.

The authors build a baseline agent-based model in an exponentially growing population,
starting from one single cell with one copy of ecDNA. In this model, cells divide, but never die
without giving birth to two daughters. At every division, the copies of ecDNA are doubled and
shared randomly among daughter cells, following a Binomial trial with probability p = 0.5.
The simulation methodology is given below:

The cell to divide is chosen using a Gillespie[5] algorithm, with different rates for cells
with ecDNA and without. More precisely, with N+ (resp. N−) representing the number
of cells with ecDNA (resp. without), we draw two independent random numbers ξ+ and
ξ− from U([0, 1]) and compute the corresponding reaction times :

τ+ = − 1

sN+
ln(ξ+) and τ− = − 1

N−
ln(ξ−), where s is the selection parameter.

The smallest reaction time determines which type of cell is chosen for division, and the
cell to divide is picked uniformly within this category. This process is iterated until the
population reaches a given input size N = N+ +N−.

Given this model, the first step of my project was to run simulations and compare the results
to our real data, presented in the next section.
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2 Reference data

2.1 Overview

Since ecDNA is a relatively new topic, very limited data was available on ecDNA counts.
Fortunately, Ben Wesley, a PhD student at IICD, had recently worked on ecDNA for [1] and
was able to share a small dataset3 with us. This dataset was built using single-cell DNA
sequencing, and it includes the copy number distribution of the organoid CAM277 at two
different time points, referred to as "passages". These distributions are shown in Figure 2.

Figure 2: Histograms of ecDNA copy number distributions at passages 4 and 15

The authors of [13] provided limited experimental details, but we uncovered some valuable
information with Ben’s assistance. The cells were cultured over approximately 6 months for up
to 16 passages, averaging about 11 days per passage. Looking at esophageal adenocarcinoma
cell lines, Ben found that they typically divide every 30 hours. Using this information, we
estimated that a single cell undergoes around 9 divisions per passage.

2.2 Comments

Still, several significant questions remained. First, we do not know when the first cell with
ecDNA appeared in the population. Ben told us to assume that it emerged around passage
-5, which we did. But we soon realized that the starting point was a critical parameter that
should ideally also be inferred from the data. Moreover, we have no idea what the size of the
population was at each time point. We only know that the number of cells for which we have
ecDNA counts is 355 at passage 4, and 581 at passage 15. Finally, we do not know much
about the sequencing method and its uncertainties. The sequencing detects ecDNA copies, so
naturally we do not have any detection for cells without any copy. But for very small copy
numbers (less than 10), we are not sure whether we can trust the data. This is why we decided,
for distance computations later on, to consider only copy numbers larger4 than 10.

3The original data comes from [13]. It was processed to obtain ecDNA copy number distributions for [1].
4We filter all distributions once the simulations are over, removing copy numbers smaller than 10.
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3 Mathematical modeling

3.1 Assumptions and general considerations

In every model, we assume that all copies of ecDNA are segregated randomly among daughter
cells, and that ecDNA replicates at the same rate as chromosomal DNA during the cell cycle.
We also assume that the first copy of ecDNA appeared during a single rare event, so that
a cell without ecDNA will never gain new copies. For simplicity purposes, we focus on one
single type of ecDNA, but the modeling could be adapted to track different kinds of ecDNA
in a population.

Given that cancer sample statistics depend on particular tumor growth characteristics, it was
hard to decide which dynamic to use for our cell populations. We tried different models with
constant size, exponential growth and logistic growth. We also had to decide when to end
our simulations, which took us a long time to figure out: we tried reaching a given cell count
(for growing populations), waiting up to a given time, and finally chose to stop after a given
number of cell divisions.

Since we wanted to study the distributions of ecDNA counts, we had to condition all our
simulations on non-extinction of ecDNA. Starting with one single cell containing one copy, the
ecDNA could get lost early in many simulations. So we decided to run another simulation
every time one failed to keep ecDNA in the population.

3.2 Exploring different models

After reviewing the literature, the next step was to implement different models in order to
identify the most suitable one for our problem. We considered three models, for which we
conducted multiple simulations with various parameters, and visualized the results to gain
insights into their respective behaviors.

3.2.1 Baseline model from [9]

We initially explored the model presented in 1.3, which we implemented to run simulations
and visualize output distributions. We realized that these distributions’ shapes, one of which
is shown in Figure 3, did not align with our reference data. The range of ecDNA copy numbers
was consistently too narrow. Even when simulating up to a million cells with a higher selection
parameter, the maximum copy numbers achieved were significantly lower than those observed
in the data. This observation suggests that the model might have been too simple to account
for variations in fitness based on ecDNA copy number.

Indeed, this model does not take into account the fact that cells with higher ecDNA counts are
thought to be fitter. It distinguishes only cells with and without ecDNA, no matter the copy
number. We could try to adapt this model by drawing one uniform for every copy number,
but it would be too time-consuming. For all these reasons, we concluded that we should build
a new model in which ecDNA counts would have a greater impact on the evolution of the
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Figure 3: Histogram of ecDNA counts on 104 cells with s = 3

population.

3.2.2 Feedback loop model

The second model that we tested was inspired from CINner[8], using a feedback loop to make
the population follow a given input dynamic. In this model, we used the same event rate
for all cells, but different division probabilities depending on ecDNA counts: at every step, a
random cell is picked, and divides or dies with a probability determined by its ecDNA copy
number.

In our first simulations, we used only two different division probabilities: with and without
ecDNA, similarly to the previous model. Yet we could easily add complexity to incorporate
the whole range of ecDNA counts, now without the computation time issues that we had with
the previous model. The simulation methodology is given below:

At every step, we compute the time until the next event using the total cell count, and
the cell to undergo the event is picked randomly. Then, the chosen cell divides with
probability

pdiv(t) =

{
g(t)× s+(t) if the cell has ecDNA
g(t)× s−(t) otherwise

where g is a negative feedback loop ensuring that the total cell count P (t) follows a given
input dynamic P ∗(t):

g(t) =
P ∗(t)

P ∗(t) + P (t)

and s+, s− model the selection for the fittest cell, with f (resp. 1) the fitness of cells with
(resp. without) ecDNA:

s+(t) =
f

favg(t)
, s−(t) =

1

favg(t)
, with favg(t) =

P+(t)× f + P−(t)× 1

P (t)

This model was more flexible than the previous one thanks to the input dynamic, and the
results showed some improvement. Yet we were still far from reaching copy numbers as large
as those from the reference data, and simulations could be time-consuming depending on what
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condition we chose to terminate them. We also encountered some issues when the range of
fitness values in the population was too wide, which was the case for functions that would
grow quickly. We did not try simulating with different division probabilities for each copy
number, as we were already satisfied with another model that we tested in parallel.

3.2.3 Moran process

The last model that we considered is inspired by Moran processes. A key difference from the
other two models is that it maintains a constant total population size N . Simulations begin
with one cell containing a single copy of ecDNA, while the remaining N − 1 cells are ecDNA-
free. The population size remains constant through paired events of death and division, and
the selective advantage conferred by ecDNA is modeled using a fitness function impacting
cell division. This model turned out to be our best option, with enough modeling flexibility,
reasonable computation time, and results that were a great fit with our data. Further details
and simulation outputs are provided in Section 4.
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4 Moran death-birth process with random segregation

4.1 Fundamentals of Moran processes

The Moran process is a stochastic model used to simulate genetic drift, devised at first for
populations with two alleles A and a. Initially, each of the N individuals carries one of the two
alleles. Then at every generation, one individual is chosen at random to reproduce, producing
an offspring that replaces another individual chosen randomly in the population.

While Moran processes can be neutral, they can also model selective pressures in reproduction.
In such cases, an individual’s likelihood of reproduction is determined by its relative fitness
in the population, referring to its ability to proliferate. Such models have been extensively
studied, leading to well-known theoretical results[4], including the probability of fixation of an
allele.

Beyond the basic two-allele scenario, Moran processes have been generalized to multi-type
Moran models, accommodating more than two possible genetic traits within a population.
This extension finds applications in various fields, including modeling cell populations where
different cell types interact and compete over generations.

Furthermore, in the standard Moran process, both the reproducing individual and the one
being replaced are chosen randomly through two independent draws with replacement. This
allows for the same individual to be selected for both events. However, an alternative approach
consists in defining a Moran process without replacement, where the order in which reproduction
(birth) and replacement (death) events occur becomes significant. We decided to use a Moran
death-birth process[3],[10], in which we pick the cell to die before selecting the cell to divide.

To sum up, without considering the random distribution of ecDNA copies among daughter
cells, the model follows the pattern shown in Figure 4 below:

Figure 4: Basic multi-type Moran process

Although not implemented in our model, it is worth mentioning that Moran processes have
been extended to populations with spatial structures, where individuals are represented as
vertices of a graph[4]. In this framework, each individual can replace only one of its neighbors,
leading to fixation probabilities that heavily rely on the graph’s structure.

4.2 Model description

In our Moran model for ecDNA dynamics, we consider a population of cells with a constant
size N , where each cell carries a certain number of copies of ecDNA. The model is presented
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schematically in Figure 5, and formal mathematical definition is given in 4.3. The key
distinction from typical Moran processes is that ecDNA copies are randomly distributed
between daughter cells. As a result, in most cases, the daughters will not share the same
profile as their mother. Our model proceeds in discrete time steps, and each step is composed
of one cell death followed by one cell division:

• Cell death: A cell is selected for death uniformly at random, and removed from the
population.

• Cell division: A cell is picked for division at random among the remaining cells,
proportionally to fitness (see 4.4 for considerations on fitness functions). During division,
the ecDNA copies of the mother cell are doubled and shared randomly between its
daughter cells.

Figure 5: Moran death-birth process with random ecDNA segregation

4.3 Mathematical notations and formulas

Notations: N denotes the total population size, and N i
k the number of cells containing k

copies of ecDNA at time step i. Therefore, at every time step i, we have N =
∑

k N
i
k and

the population is fully described by (N i
k)k≥0. We also denote by Di the number of copies of

ecDNA in the cell picked to die at time step i, and similarly Bi for the cell picked to divide.
Finally, fk denotes the fitness of a cell containing k copies of ecDNA.

Initialization: Simulations start with one cell containing one copy of ecDNA, and all the
others containing no copy. With the previous notations: N0

1 = 1 and N0
0 = N − 1.
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Simulation methodology:

We repeat the death-birth steps a given number of times, using the following probabilities:

Since the dying cell is picked uniformly in the population:

P(death of a cell with k copies at time step i) = P(Di = k) =
N i

k

N
.

After the death of the chosen cell, the population is updated accordingly:

N i+

Di
= N i

Di
− 1 and for k ̸= Di, N i+

k = N i
k.

Then, the dividing cell is picked uniformly in the population, proportionally to fitness:

P(division of a cell with k copies at time step i) = P(Bi = k) =
N i+

k fk∑
j N

i+
j fj

.

Once the dividing cell is chosen, the copies of ecDNA are doubled and shared randomly
among daughter cells. The number of copies Ci given to the first daughter cell is drawn
from the binomial distribution B(2Bi, 0.5). The other daughter cell gets the remaining
copies: 2Bi − Ci.

After the division of the chosen cell, the population is updated accordingly for the next
step:

• First, for every k, N i+1
k = N i+

k

• Then N i+1
Bi
← N i+1

Bi
− 1 (mother cell)

• And for j ∈ {Ci, 2Bi − Ci}, N i+1
j ← N i+1

j + 1 (daughter cells)

4.4 Fitness functions

A crucial aspect of our modeling was the selection of the fitness function, which plays a role
in determining the cell chosen for reproduction at each step. For the sake of simplicity and
interpretability, we aimed for a function that remained straightforward and depended on a
single selection parameter s.

We began by running many simulations using different simple fitness functions. Our goal was
to examine the resulting output distributions, and identify those whose overall shape matched
best our reference data. With fk the fitness of a cell with k copies of ecDNA, we first considered
the following functions, which seemed the most intuitive:

• Binary fitness: f0 = 1, and fk = s for k ≥ 1, which distinguishes only cells with and
without ecDNA, regardless of copy number.

• Linear fitness: fk = 1 + s k, with s a selection parameter.
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• Power fitness: fk = (1 + s)k, with s a selection parameter.

As expected, we quickly realized that binary fitness did not provide enough selective advantage
to cells with ecDNA to reach the high copy numbers observed in our data. On the other hand,
both linear and power fitness grew too rapidly, resulting in the complete loss of cells with
low copy numbers and a strong shift toward very high counts, even with a small selection
parameter. We concluded that we needed an intermediate function that would allow for large
ecDNA counts, while maintaining some cells with lower copy numbers. This led us to try
with a logarithmic fitness function, which proved to be the best among those we considered.
Therefore, we first decided to use the following fitness function for our simulations:

fk = 1 + ln(1 + sk)

Figure 6 provides insight into why logarithmic fitness outperforms linear fitness on our data:
it increases rapidly for small copy numbers, promoting ecDNA proliferation, but its slope
decreases significantly as the copy number grows. This also results in simulations aligning quite
well with biological observations, which indicate that ecDNA counts cannot grow indefinitely
due to a biological upper bound on the number of copies a cell can carry.

Figure 6: Logarithmic and linear fitness functions

4.5 Simulation set-up

One of the main parameters we had to choose to run simulations was the total population
size N . The reference data does not provide any information on the total size in the cell line,
only indicating that 355 cells were sampled at passage 4 and 581 at passage 15. Therefore, we
decided to use N = 1000 and kept this value throughout the project.

Another important consideration was determining when to stop the simulation. We eventually
decided to run our simulations up to a specified number of cell divisions, determined through
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an approximation based on cell properties. Based on our estimations from 2.1, we decided
that one passage would correspond to 9 ∗N = 9000 cell divisions.

To study the distribution of ecDNA copy numbers, we needed simulations in which ecDNA
was still present at the end. Since our model starts with a single cell containing one copy and
includes cell death, it was possible for all ecDNA to be lost during the simulation. This led
us to introduce a non-extinction condition: if at some point no cell had any ecDNA left, then
the simulation would be terminated and restarted. Frequently, especially when the selection
parameter was small, ecDNA was lost early in the simulations, requiring several hundred runs
to obtain one that preserved some ecDNA.
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5 Parameter inference using ABC

5.1 Introduction

5.1.1 Overview of ABC methodology

Approximate Bayesian Computation (ABC) is a computational method used for parameter
inference when the likelihood function is intractable or difficult to compute. In that case,
usual techniques such as Maximum Likelihood Estimation cannot be implemented. Then,
instead of relying on explicit likelihood calculations, ABC starts from a prior distribution of
the parameters and generates a posterior distribution through repeated simulations. In each
simulation, parameters are sampled from the prior distribution (often a uniform distribution
on a range likely to contain the optimal value), and simulated data is generated using these
parameters. The simulated data is then compared to the reference data using a distance
function. Parameters that produce synthetic data sufficiently "close" to the observed data are
accepted, and used to approximate the posterior distribution.

By running a large number of simulations and accepting parameters that result in close
matches, ABC effectively builds a posterior distribution that reflects the parameters most
likely to explain the reference data.

5.1.2 Rationale for using ABC with ecDNA

One reason why ABC seems to be a good method for parameter inference in our model is that
computing an explicit likelihood function is too complicated. While some theoretical results
are available on basic Moran processes, the random segregation of ecDNA adds another layer
of complexity to our model.

5.2 ABC set-up for selection parameter inference

Our first goal was to run an ABC algorithm to infer the selection parameter s, assuming
that the starting passage was known and equal to −5 (see 2.2 for explanation). This single
parameter inference is the main point of the project. Yet we also tried to run a double inference
to infer both the selection parameter and the starting passage, presented in 5.5.

We first explain the algorithm overall, then give more detailed information on prior distribution
and distance function.

5.2.1 Our ABC algorithm

In Algorithm 1, we outline the method used to infer the selection parameter s. This approach
follows a standard ABC framework, except for the definition of the posterior distribution.
Instead of employing a fixed distance threshold, as in many ABC methods, we decided to keep
the top 5% of our simulations. This approach offered flexibility, given our uncertainty about
the magnitude of the distances encountered. It also remains as adaptable as a threshold-based
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method, since we can adjust the percentage as needed. We could as well have later defined a
distance threshold, based on observed values, but we decided to keep the 5% threshold that
seemed to work fine.

Algorithm 1 ABC Algorithm for Selection Parameter Inference
1: Input: Reference data R. Prior distribution of s. Number of samples Nsamples. Distance

function d.
2: Output: Posterior distribution of s.

3: Sample Nsamples values of s from the prior distribution.
4: for each sampled s do
5: Run one simulation S with selection parameter s.
6: Compute the distance d(S,R) between simulated and reference data.
7: end for

8: Find the simulations that gave the 5% smallest distances d(S,R).
9: Return the values of s corresponding to these 5% best simulations.

A simplified schematic version of the algorithm is also presented in Figure 7.

Figure 7: ABC algorithm for selection parameter inference

5.2.2 Prior distribution

Based on the outcomes of preliminary simulations, we decided to set our prior distribution for s
as uniform over the range [0.01, 0.1]5. Values of s below 0.01 were impractical because ecDNA
frequently disappeared due to insufficient selective pressure, often resulting in thousands of
unsuccessful simulations. As for the upper bound, the average copy numbers reached with

5Figure 6 shows that the fitness functions are significantly different within this range.
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s = 0.1 were significantly larger than those from our reference data. This ensured that the
posterior would not be constrained to the upper bound of the range.

5.2.3 Distance

Another major parameter of our ABC setup was the choice of the distance metric used to
compare simulated and reference data. We opted for the Wasserstein-1 distance[12], also
known as Earth Mover’s Distance (EMD). Intuitively, this metric quantifies the minimum
"cost" required to transform one distribution into another. We believed it could perform
better than other traditional metrics (such as L1 or L2) in capturing the overall shape of the
distribution. Our primary concern was the overall distribution rather than specific individual
copy numbers, especially given the measurement uncertainties in the reference data. The
Wasserstein-1 distance is well-suited for this purpose, as it remains robust to small variations
within the distributions.

In the one-dimensional case6, the Wasserstein-1 distance between probability distributions µ
and ν with cumulative distribution functions (CDFs) Fµ and Fν is given by:

W1(µ, ν) =

∫
R
|Fµ(x)− Fν(x)| dx (1)

In other words, Equation (1) means that the Wasserstein-1 distance between µ and ν is the
area between their respective CDFs.

We used both time points to compute the distance, defined as a weighted sum of the Wasserstein-
1 distances at passages 4 and 15 with coefficients (2, 0.5)7. The distance d(S,R) between the
simulation S and the reference R is then given by:

d(S,R) = 2 ∗W1(SP4,RP4) + 0.5 ∗W1(SP15,RP15) (2)

5.3 Results

Based on the previous explanations, we implemented our ABC algorithm with the following
configuration:

• Prior distribution for s: U([0.01, 0.1])
• Distance: d defined in Equation (2)
• Number of samples: Nsamples = 104

• Starting passage: P = −5
• Number of cells in the population: N = 1000

• Number of events per simulation: nevents = (15− (−5)) ∗ 9 ∗N = 180 000

The posterior distribution obtained with this set-up is given in Figure 8, centered around
a mean of 0.022. There is a notable concentration of the distribution around this mean,

6See [12] for the general formula.
7We chose these values based on the Wasserstein-1 distances observed at P4 and P15 on all 104 samples.
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indicating a satisfactory fit. However, given that this average is near the lower boundary of
the prior distribution, the posterior might be constrained. But as discussed earlier in 5.2.2,
we decided not to run simulations with smaller values because they would fail too often.

Figure 8: Posterior distribution of s, over 104 samples starting at P-5

To confirm the alignment of our top simulations with the reference data, we plotted the
reference and simulated distributions of a few top simulations at passages 4 and 15. The
distributions closely matched the reference both in shape and values, confirming the relevance
of our modeling. Figure 9 shows the distributions at passages 4 and 15 of the best simulation
based on the distance d. Additionally, to provide an overview of the top 5% simulations, the
average histograms and confidence intervals are shown in Figure 10.

(a) Passage 4 (b) Passage 15

Figure 9: ecDNA counts of reference data and best simulation over 104 samples

(a) Passage 4 (b) Passage 15

Figure 10: ecDNA counts of reference data and top 5% best simulations over 104 samples
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5.4 Synthetic testing

To evaluate our method, we conducted synthetic testing. This consists in generating synthetic
reference data using predefined parameters, and then applying our ABC algorithm to infer
these parameters. By comparing the inferred posterior distributions with the actual parameter
values, we can assess the accuracy and reliability of our method. The inference should ideally
return posterior distributions that are centered around the true parameter values used to
generate the synthetic data.

To prevent biases around the borders of the prior range [0.01, 0.1], we sampled 500 s values
uniformly in [0.03, 0.08]. For each of these values, we ran one simulation and gave it as
reference to our ABC algorithm. Then, we took as estimated value the average of the posterior
distribution obtained. A scatter plot of the estimated and true values is shown in Figure 11.

Figure 11: Ground truth vs. estimated values of s

If the inference worked perfectly, then all points would be on the green diagonal. Here, it is
obviously not the case, and some points are even very far from the diagonal. Yet the average
error is around 0.01, which appears to be quite reasonable. After seeing this plot, we tried
to gain a deeper understanding of what was happening, and why the inferred value could
be so far from the ground truth in some cases. We visualized more distributions and ended
up concluding that our simulations’ high stochasticity posed a great challenge for parameter
inference.

Indeed, our stochastic model often yields quite different final copy number distributions, even
with identical input parameter sets (see Figure 12). The final distribution depends heavily on
when the ecDNA counts start exploding.
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Figure 12: Mean ecDNA copy number in the cell population over time on 10 simulations with
s = 0.04

5.5 Double inference

Finally, we also tried to infer both the selection parameter s and the starting passage P (see
2.2) at the same time. The method is similar in all points to the previous one, except that the
prior for the parameters (s, P ) is now uniform on [0.01, 0.1]× {−9,−8, . . . , 0}. We proceed in
the exact same way as before for the ABC inference, and obtain the joint posterior distribution
shown in Figure 13.

Figure 13: Scatter plot of 5% best (s, P ) parameters over 104 samples

This plot does not seem to show any strong concentration around a single point, but more of
a concentration along the diagonal. Our interpretation is that there might be a compensation
between the selection parameter and the starting passage, making it difficult to infer both of
them with only two time points. For some given (s, P ), similar output distributions could
be reached either starting earlier with a larger s (strong selective advantage), or later with a
smaller s.
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Conclusion

Discussion

Overall, this research project has produced promising results. We notably reached a strong
alignment between simulations and reference data, with similar copy numbers and distribution
shapes. This is a significant improvement over previous models from the literature, which
showed limited similarity and used simpler methods to model the influence of ecDNA counts
on cell fitness. Additionally, our ABC inference method shows posterior distributions that tend
to center center around specific values, supporting the significance of our selection parameter
and the relevance of our model.

However, a notable challenge lies in the limitations observed during synthetic testing. The
high stochasticity of our simulations, particularly the unpredictable timing of ecDNA count
explosion, complicates the inference. While the selection parameter significantly impacts long-
term outcomes, its influence is minimal during the initial stages of the simulations. Although
the selection of the dividing cell is made proportionally to fitness, there are initially so many
cells without ecDNA that it takes a long time before the ecDNA starts spreading. This results
in output distributions that may appear similar despite substantial variations in selection
parameters, posing challenges for accurate inference.

One potential solution could involve initializing simulations from a known initial state, where
ecDNA propagation is already underway. This could help mitigate the stochastic variability
associated with the timing of ecDNA counts explosion. Thus, we tried running simulations
from passage 4 to passage 15, to identify the optimal selection parameter to transition between
these two states. However, we did not know how to handle the constant size of our population:
while we have data on the copy numbers of some cells, the number of cells lacking ecDNA
remains unknown. Addressing this requires determining how many cells without ecDNA to
include, which we do not know. Due to time constraints at the end of the internship, we did
not look into this any further, but we consider it a promising direction for future research.

Next steps

While we have already obtained some interesting results from only two time points on one
single organoid, we think that more robust conclusions could emerge from wider data. We
believe that future research could benefit from incorporating additional time points and more
comprehensive data. This includes information such as total population size, the timing of
ecDNA formation, and estimates of the number of cells without ecDNA or with few copies
that may be missed during sequencing.

In conclusion, while our current model provides valuable insights, there are several paths for
further exploration to enhance the accuracy and reliability of our modeling and inference.
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