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Figure 1: Visualization of different steps of the denoising process during the sampling of a molecule using an Equivariant
Diffusion Model, from 𝑡 = 𝑇 = 1000 on the left to 𝑡 = 0 on the right.

Introduction
This project is a study of the paper "Equivariant Diffusion for Mole-

cule Generation in 3D" by Hoogeboom et al. [4], which introduces

E(3) Equivariant Diffusion Models (EDMs) as a novel framework

for 3D molecule generation. This approach addresses long-standing

challenges such as stability, scalability and inference speed, repre-

senting a significant improvement over previous methods.

In this report, we first contextualize the paper and outline the meth-

ods and experiments conducted by the authors. Then, we highlight

limitations of the proposed approach, investigate some decisions of

the authors and present the findings of our own experiments. More

specifically, Section 1 provides background on the paper, incuding

its main contributions and related work. Next, Section 2 focuses on

technical aspects of the authors’ method, especially on the diffusion

model. Section 3 presents the authors’ main results, introducing the

relevant datasets, metrics and methodology. Finally, in Section 4, we

provide the results of our experiments and explore some limitations

of the paper, exhibiting failure cases and questioning some of the

authors’ choices.

1 Context of the Paper
1.1 Molecule Generation
The paper is part of a body of research works exploring deep gen-

erative models for molecule generation. These models have been

applied to molecular structures encoded as graphs, with the goal

of generating stable, diverse and new molecules. These features

are vital for applications such as de novo design (creating novel

molecules from scratch with desired properties).

1.2 Related Work
The authors provide a comprehensive literature review to contex-

tualize their method. They benchmark their model mainly against

two alternative approaches for 3D molecule generation, which both

exploit E(3) equivariance properties: G-SchNet [2] and Equivari-

ant Normalizing Flows (E-NFs) [9]. E(3) equivariance refers to the

physical symmetries of 3D molecules. It is introduced and formally

defined in Subsection 2.2.

More precisely, G-SchNet uses autoregressive models to generate

molecules, while E-NFs rely on continuous-time normalizing flows.
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Both approaches demonstrate the benefits of enforcing E(3) equiv-

ariance directly into the models’ architecture. In E-NFs, the equiv-

ariance is achieved through Equivariant Graph Neural Networks

(EGNNs), introduced in [10]. Similarly, EDMs leverage EGNNs to

learn distributions, but differ by using diffusion as the generative

process instead of normalizing flows. Yet, both of these methods

have their limitations: G-SchNet introduces an artificial atom or-

dering, and E-NFs requires solving computationally demanding

Ordinary Differential Equations (ODEs).

Beyond these 3D-based methods, previous literature on molecule

generation also includes techniques that do not rely on 3D molecu-

lar representations. Such methods include one-shot graph-based

frameworks, such as GraphVAE [6], to which the authors also com-

pare their method.

1.3 Main Contributions
The EDM described in the paper is the first Denoising Diffusion

Probabilistic Model (DDPM) to leverage E(3) equivariance. Upon

publication, it achieved state-of-the-art performance on several

molecule generation benchmarks. It ensures equivariance to phys-

ical symmetries, generates more stable molecules than previous

methods and scales efficiently to larger datasets.

A key feature of the method is its flexibility in handling hydrogen

atoms, either explicitly or implicitly. Unlike most models that treat

hydrogens as standard elements, this approach was designed to

work effectively without them by focusing exclusively on heavy

atoms. In that case, hydrogens are added in a post-processing step to

heavy atoms with incomplete valency, aligning with their expected

reference valency. This strategy significantly reduces computational

complexity by minimizing the amount of data to process, resulting

in faster training and sampling.

The EDMwas also designed to support conditional molecule genera-

tion, which is very promising for drug discovery where generating

molecules with specific properties is often a key objective. The

conditions available correspond to chemical properties provided

in the training dataset, such as those in QM9
1
. Examples of such

properties include polarizability 𝛼 and dipole moment 𝜇. However,

for this project, we decided not to focus on this particular feature.

1
The QM9 dataset is presented thoroughly in Subsection 3.1.
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2 EDMMethod
In this Section, we present the method proposed by the authors and

provide details on the diffusion model, equivariance and EGNNs.

2.1 The Diffusion Model
2.1.1 Background on diffusion models. Diffusion models generate

new data by transforming pure random noise into meaningful sam-

ples through a denoising process. The model is trained to reverse a

noising procedure, called the diffusion process.

A diffusion process is a Markov process that progressively adds

Gaussian noise to an input sample. For a sample 𝑥 , at every time

step 𝑡 ∈ {0, . . . ,𝑇 }, the noising process is defined as follows:

𝑞(𝑧𝑡 |𝑥) = N(𝑧𝑡 |𝛼𝑡𝑥, 𝜎2𝑡 𝐼 ) (1)

The parameters 𝛼𝑡 ∈ R+
and 𝜎𝑡 ∈ R+

respectively determine how

much of the input signal is retained, and the amount of noise added.

They usually follow a predefined schedule, which ensures that the

signal-to-noise ratio (SNR) 𝛼2𝑡 /𝜎2𝑡 gradually decreases
2
.

From Equation (1), we can derive transition probabilities 𝑞(𝑧𝑡 |𝑧𝑠 )
between latent states, for 𝑡 > 𝑠 , which are also Gaussian. Then the

complete noising process can be defined as:

𝑞(𝑧0, 𝑧1, . . . , 𝑧𝑇 |𝑥) := 𝑞(𝑧0 |𝑥)
𝑇∏
𝑡=1

𝑞(𝑧𝑡 |𝑧𝑡−1) (2)

Using Bayes rule, we can show that the true denoising process,

defined by the conditional posteriors 𝑞(𝑧𝑠 |𝑥, 𝑧𝑡 ), is also Gaussian:

𝑞(𝑧𝑠 |𝑥, 𝑧𝑡 ) = N(𝑧𝑠 | 𝜇𝑡→𝑠 (𝑥, 𝑧𝑡 ), 𝜎2𝑡→𝑠 𝐼 ) (3)

Now, when generating new samples, the variable 𝑥 is unkwown

and precisely what we want to reach by the end of the process. It

is thus approximated using a neural network 𝜙 , which provides

𝑥 = 𝜙 (𝑧𝑡 , 𝑡). This defines a generative transition distribution 𝑝:

𝑝 (𝑧𝑠 |𝑧𝑡 ) = 𝑞(𝑧𝑠 |𝑥, 𝑧𝑡 ) = N(𝑧𝑠 | 𝜇𝑡→𝑠 (𝑥, 𝑧𝑡 ), 𝜎2𝑡→𝑠 𝐼 ) (4)

The denoising is then done step by step, starting from a random

latent state 𝑧𝑇 ∼ N(0, 𝐼 ) and iteratively transitioning from 𝑧𝑡 to

𝑧𝑡−1. The generated sample 𝑥 is eventually derived from 𝑧0.

2.1.2 Noising procedure for molecules. The EDMmethod generates

molecules as sets of points, where each point represents an atom

with its own position and features. Specifically, a molecule with𝑀

atoms is encoded as a set {(𝑥𝑖 , ℎ𝑖 )}𝑀𝑖=1, with 𝑥𝑖 ∈ R3
representing

the 3D coordinates of each atom, and ℎ𝑖 ∈ R𝑛𝑓
the atomic features.

These features typically include atom types (H, C, O. . . ) and integer-

valued atom charges. The bonds between atoms are not taken into

account through the process, and every latent state is encoded

similarly as molecules: 𝑧𝑡 = {(𝑧𝑥
𝑡,𝑖
, 𝑧ℎ
𝑡,𝑖
)}𝑀

𝑖=1
. Figure 2 provides a

schematic representation of the noising process.

We now provide further details on how both continuous and cat-

egorical features are handled during the noising process. Adding

noise to 3D coordinates is relatively straightforward, since they are

continuous variables. However, the EDM requires the distribution

𝑝 to be E(3) equivariant w.r.t. the variable 𝑥 . Hence, 𝑝 must be in-

variant to translations, which is impossible for a distribution on

R3×𝑀
since it must integrate to one. Thus, the authors propose to

2
Additional information and missing analytical expressions from this Subsection are

provided in Appendix A.

𝑥,ℎ 𝑧0 𝑧𝑡 𝑧𝑡+1 𝑧𝑇

N(0, 𝐼 )

molecule noise

𝑞 (𝑧0 | 𝑥,ℎ) 𝑞 (𝑧𝑡+1 | 𝑧𝑡 )

Figure 2: Noising process

make the center of gravity of the point clouds {𝑧𝑥
𝑡,𝑖
}𝑀
𝑖=1

be zero at

each time step, by setting

∑
𝑖 𝑧

𝑥
𝑡,𝑖

= 0. This comes down to sampling

𝑧𝑥𝑡 from the normal distribution on the subspace of R3×𝑀
where∑

𝑖 𝑧
𝑥
𝑡,𝑖

= 0. From now on, this distribution will be noted N𝑥 .

On the other hand, handling categorical features such as atom type

is more complex. Representing them as integers is problematic,

since it introduces irrelevant ordering biases. To address this, cate-

gorical features are represented as one-hot vectors. The example of

H2O is given in Figure 3 with QM9 encoding.

(a) With explicit hydrogens (b) With implicit hydrogens

Figure 3: Atom type one-hot encoding on H2O

In Figure 4, we visualize different steps of this noising process on a

butanol molecule (C4H10O).

Figure 4: Molecular representations of latent states 𝑧𝑡 for
selected time steps 𝑡 ∈ {0, . . . ,𝑇 }, with 𝑇 = 100, during the
noising process of a butanol molecule. Bonds are shown in-
dicatively, to give a sense of inter-atom distances.
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2.1.3 Generative denoising procedure. To generate new samples,

the noising process is reversed. An EGNN is trained to learn the

denoising procedure, by predicting the noise at each step. More in-

formation on this network is given in Subsection 2.3. The generative

process is described schematically in Figure 5.

𝑧𝑇 𝑧𝑡 𝑧𝑡−1 𝑧0 𝑥,ℎ

N(0, 𝐼 )

noise molecule

𝑝 (𝑧𝑡−1 | 𝑧𝑡 ) 𝑝 (𝑥,ℎ | 𝑧0 )

Figure 5: Generative denoising process

It is worthmentioning that this framework assumes that the number

of atoms in the generated molecules is fixed beforehand. In practice,

models are designed to handle the maximal number of atoms found

in molecules of the training set. They pad (𝑥, ℎ) with zeros to ensure
that all sets belong to the same space. During sampling, we first

draw the number of atoms 𝑀 ∼ 𝑝 (𝑀), with 𝑝 computed on the

training dataset. Then, we generate the coordinates and features

𝑥, ℎ ∼ 𝑝 (𝑥, ℎ |𝑀) using the model.

2.1.4 Optimization Objective. Conceptually, the neural network 𝜙
should maximize the log-likelihood of the training dataset given

the model: log 𝑝 ({(𝑥, ℎ)𝑖 }𝑖 |𝜙). But this objective is untractable, and
the one used to optimize the model is a lower bound of the log-

likelihood, derived in [3]. For the EDM, the lower bound is simplified

by neglecting terms that are close to 0 due to specificities of the

diffusion process and the discrete nature of the featuresℎ. The lower

bound is further simplified by approximating some multiplicative

factors by 1, and by having the neural network 𝜙 predict the noise

𝜀 = 𝜙 (𝑧𝑡 , 𝑡) to add to the latent state 𝑧𝑡 , instead of the next latent

state. The final objective to minimize is then, for a predicted noise

𝜀 at time step 𝑡 :

L𝑡 = E𝜀𝑡∼N𝑥 (0,𝐼 )×N(0,𝐼 )
[
∥𝜀𝑡 − 𝜀∥2

]
(5)

In practice, at each iteration of the optimization algorithm that

updates the parameters of 𝜙 , a time step 𝑡 is chosen uniformly from

{0, . . . ,𝑇 } and a noise 𝜀𝑡 is sampled fromN(0, 𝐼 ). The 𝑥 component

of the noise is then shifted so that its center of gravity is 0: we

replace 𝜀𝑥𝑡 with 𝜀𝑥𝑡 −
∑
𝑖 𝜀

𝑥
𝑡,𝑖
. Given the latent state 𝑧𝑡 = 𝛼𝑡 (𝑥, ℎ)+𝜎𝑡𝜀𝑡 ,

the model’s parameters are then updated in a direction chosen to

minimize ∥𝜀𝑡 − 𝜙 (𝑧𝑡 , 𝑡)∥2. More details on the derivation of this

objective are given in Appendix B. Intuitively, the goal is to train

the model to accurately predict the noise added at each step of the

diffusion process.

2.1.5 From diffusion outputs to molecules. One critical step in Fig-

ure 5 is the last one, which transforms the denoised version 𝑧0 into

a real molecule. Indeed, 𝑧0 only contains the denoised 3D coordi-

nates 𝑥𝑖 and features ℎ𝑖 of each atom 𝑖 ∈ {1, . . . , 𝑀}. At this point,
the ℎ𝑖 are not one-hot encoded and the bonds between atoms are

unknown. We describe the authors’ procedure below.

First, the categorical features are converted to one-hot vectors by

taking the argmax of each feature. Next, building a real molecule re-

quires determining the bonds between atoms, along with their type:

simple, double, triple or none. The authors achieve this by looking

at distances between the atoms and at their types, using a lookup

table to map those to the appropriate bond type for each atom pair.

This process is represented schematically in Figure 6, assuming that

atom type is the only feature and using QM9 encoding.

Figure 6: Last step of the generation, from 𝑧0 to the molecule

2.2 Background on Equivariance
The method introduced in the paper leverages E(3) equivariance to

generate molecules. We provide some background on this notion.

The group of isometries of R3
, which includes translations, symme-

tries and rotations, in noted 𝐸 (3). A conditional distribution 𝑝 (𝑥 |𝑧)
is said to be 𝐸 (3)-equivariant if, for all actions 𝑅 ∈ 𝐸 (3), we have:

𝑝 (𝑅𝑥 |𝑅𝑧) = 𝑝 (𝑥 |𝑧) . (6)

The authors decided to have the conditional distribution of the

generated molecule 𝑥 given the input latent variable 𝑧 verify this

equivariance property, as chemical properties of molecules are

invariant under the transformations of 𝐸 (3). This is why invariance
to translations was ensured in Subsection ??, by enforcing centers of
gravity equal to zero. Similarly, for the invariance to the group𝑂 (3)
of rotations and symmetries, the authors used an EGNN, which we

describe in the following Subsection.

2.3 Equivariant Graph Neural Networks
The generative denoising process is learned using a neural network

𝜙 . To ensure that the denoising distribution 𝑝 (𝑧𝑠 |𝑧𝑡 ) is E(3) equi-
variant, the neural network’s architecture must be designed to also

respect equivariance properties. More specifically, 𝜙 should verify

that for all 𝑅 ∈ 𝑂 (3), for all (𝑧𝑥𝑡 , 𝑧ℎ𝑡 ), if

𝜀𝑥 , 𝜀ℎ = 𝜙 (𝑧𝑥𝑡 , 𝑧ℎ𝑡 , 𝑡), (7)

then

𝑅𝜀𝑥 , 𝜀ℎ = 𝜙 (𝑅𝑧𝑥𝑡 , 𝑧ℎ𝑡 , 𝑡). (8)

As shown by the authors, if this property is respected, then the

denoising process 𝑝 is equivariant. The EGNNs introduced in [10]

respect this property, and are used in the EDM architecture. In

this setting, molecules are seen as a fully connected graph with

𝑀 nodes, where each node’s attributes are the position 𝑥𝑖 and the

features ℎ𝑖 of the corresponding atom.

An EGGN is a sequence of Equivarient Graph Convolutional Layers

(EGCLs). In each of these layers, for an input (𝑥𝑙 , ℎ𝑙 ), messages

𝑚𝑖, 𝑗 between atoms 𝑖 and 𝑗 are computed as the output of a neural

network taking as input ℎ𝑙
𝑖
, ℎ𝑙

𝑗
and ∥𝑥𝑙

𝑖
− 𝑥𝑙

𝑗
∥2, which is invariant

to transformations in 𝑂 (3). The output feature vector ℎ𝑙+1 is then
computed as the output of another neural network, taking as input
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ℎ𝑙
𝑖
and a weighted average of the 𝑚𝑖, 𝑗 s, where the weights are

estimated through another neural network. The output position

𝑥𝑙+1
𝑖

is not computed as the direct output of a neural network, in

order to ensure that (8) holds. Instead, a neural network𝜙𝑥 estimates

how much each atom at 𝑥𝑙
𝑖
is pulled towards or pushed away from

the other atoms at 𝑥𝑙
𝑗
:

𝑥𝑙+1𝑖 = 𝑥𝑙𝑖 +
∑︁
𝑗≠𝑖

𝑥𝑙
𝑖
− 𝑥𝑙

𝑗

∥𝑥𝑙
𝑖
− 𝑥𝑙

𝑗
∥2 + 1

𝜙𝑥 (ℎ𝑙𝑖 , ℎ
𝑙
𝑗 , ∥𝑥

𝑙
𝑖 − 𝑥𝑙𝑗 ∥

2) (9)

This formula ensures that transforming an input with the action

𝑅 ∈ 𝑂 (3) results in the same transformation for the output, and

gives a physical interpretation of the neural network 𝜙𝑥 . It could

be interpreted as proportional to a force, which would move atoms

to minimize the energy of the system, by taking into account atom

types and charges.

3 Experimental results
In this Section, we present the main results obtained by the authors,

along with their evaluation set-up and methodology.

3.1 Datasets
The authors conducted their experiments on the QM9 and GEOM-

Drugs datasets, both described below.

QM9 [8] is a widely used benchmark in computational chemistry

andmachine learning, consisting of approximately 134k stable small

molecules. Each molecule contains up to nine heavy atoms
3
(C, N,

O and F) and comes with over a dozen chemical properties such as

dipole moment 𝜇 or polarizability 𝛼 . Figure 7 shows the distribution

of molecule sizes, which is concentrated around the average𝑀 = 18.

This imbalance already raises concerns about its potential impact

on performance, which we will explore in Subsection 4.2.

Figure 7: Histogram of the number of atoms per molecule in
QM9 (including hydrogens)

On the other hand, GEOM-Drugs [1] was designed to provide com-

prehensive molecular conformations for drug-like molecules. It

contains larger and more complex molecules than QM9, along with

some of their conformers and respective energies, but no chemi-

cal properties. Conformers are different spatial arrangements of

a molecule’s atoms, resulting from rotations around single bonds.

All these conformers have the same molecular formula and the

same bonds between atoms, but differ in their three-dimensional

structure.

Table 1 summarizes the main metrics measuring the size of the

molecules in QM9 and GEOM-Drugs, showing that the two datasets

3
"Heavy atoms" are atoms other than hydrogen.

contain on molecules of different scales. Figure 8 shows one mole-

cule from each training dataset.

Table 1: Some metrics on QM9 and GEOM-Drugs

Attribute QM9 GEOM-Drugs

Maximum number of atoms 29 181

Maximum number of heavy atoms 9 91

Average number of atoms 18 44

Number of molecules 134k 430k

(a) Example from QM9 (b) Example fromGEOM-Drugs

Figure 8: Example molecules from each training dataset

3.2 Metrics
To benchmark their model, the authors refer mostly to metrics

related to chemical properties of the molecules. More specifically,

across a fixed number of generated molecules, models are compared

on atom stability, molecule stability, and molecule validity. Atom

stability is defined as the proportion of atoms with the right valency,

and molecule stability is the proportion of molecules for which all

atoms are stable. Molecule validity is the proportion of molecules

that are chemically valid, as measured by RDKit [5].

The authors also compare models on their ability to generate unique

and novel molecules. Uniqueness is measured in RDKit as the pro-

portion of valid molecules that are structurally distinct from one

another. RDKit also includes a novelty metric, which is discussed

in Subsection 4.3.

When applicable, the authors compare the models on the final value

of the objective at the end of training. This objective is the negative

log-likelihood of the train dataset given the model. Note that, as

explained in Subsection 2.1, the objective of the diffusion model is

not exactly the negative log-likelihood, but an upper bound of it.

3.3 Performance
The authors’ experiments show that the EDM outperforms all other

3D generative models trained on QM9 in terms of negative log-

likelihood, atom and molecule stability, validity and uniqueness.

These results show the benefits of using DDPMs over other meth-

ods, as well as the significantly positive impact of incorporating

equivariance directly into the DDPM architecture.

Moreover, the EDM method is computationally more effective than

previous approaches. This quicker training allows for extension to

larger datasets with larger molecules, which can be interesting for

applications of 3D molecule generation.
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4 Limitations and Experiments
This last section explores limitations of the EDM method through

experiments and questions some of the authors’ choices.

4.1 Quality of Generated Molecules and Failure
Cases

As acknowledged by the authors, despite great performance on

all reported metrics, some generated molecules are of poor qual-

ity. Several generations are not chemically valid, and even among

the valid ones, some samples show unrealistic structures such as

unusually long or short cycles.

Starting with QM9, we first proposed the following experiment

focusing on cycles. We generated 200 molecules, and examined the

number and size of cycles within each molecule. The results are

plotted in Figure 9 below.

Figure 9: Normalized distribution of cycles size (None, 3, 4, 5,
6) in the generated outputs vs in QM9

The comparison between the generatedmolecules and themolecules

from QM9 shows a clear difference in distribution, with a noticeable

shift towards a higher number of small cycles in the generated out-

puts. While cycles play a crucial role in determining a molecule’s

chemical properties , they also introduce tension and impact its

conformational stability. Small cycles, particularly those with fewer

than four atoms, are highly strained. An example of unrealistic

output featuring such small cycles is shown in Figure 10.

Figure 10: Unrealistic generated output of the EDM trained
on QM9 (two cycles of length 3, and one cycle of length 4)

Next, on GEOM-Drugs, the authors expose some failure cases. Sev-

eral generated molecules contain unrealistically long cycles, and

a few are made of multiple disjoint components that do not form

a single molecule. The authors point out that similar issues were

observed in early stages of the training on QM9, suggesting that

further training on GEOM-Drugs could potentially solve this issue.

As explained in [7], these failure cases are, to some extent, due to the

fact that the diffusion model first chooses atom types and positions,

adding bonds only later using a lookup table. We also hypothesize

that the number of atoms in themoleculemight impact performance.

The EDM has indeed significantly more failure cases when trained

on GEOM-Drugs than on QM9, the key difference between the

datasets being the number of atoms in their molecules. It seems

that a higher atom count in latent states makes it more challenging

for the model to generate chemically coherent structures. In the

next subsection, we propose an experiment to test this hypothesis.

4.2 Impact of Molecule Size on Performance
Based on Figure 7, we built an experiment to evaluate the perfor-

mance of the model on each number of atoms individually. For

every 𝑀 ∈ {3, 4, . . . , 29}, we generated 𝑁 = 100 molecules and

computed the following metrics over each 𝑁 -sample: atom stability,

molecule stability, novelty, uniqueness and validity. The results are

displayed in Figure 11.

Figure 11: Metrics over N=100 samples for each M

While we expected more failure cases with larger values of𝑀 , we

were surprised to see that the model performed well on all metrics

for𝑀 ≥ 25 despite few training examples. Notably, the generation

was successful for𝑀 = 28, even though the training set contained

no molecule of that size. This can be attributed to the convolutional

structure of EGCLs: rather than learning𝑀 distinct operations for

each node at each layer, EGCLs learn a single "filter" which operates

locally over neighborhoods in the input graph.

On the other hand, for small molecule sizes (𝑀 ≤ 10), the results

were not as good. However, some of them should be nuanced, espe-

cially regarding uniqueness and novelty, as there are only a limited

number of valid outcomes to sample for such small sizes.

4.3 Choice of Metrics
Another important consideration is the choice of metrics used

to benchmark the EDM and assess the quality of the generated

molecules.

Evaluating the quality of generated samples in generation tasks is

inherently challenging, and molecule generation is no exception.

The primary concern is ensuring that chemical requirements are

met, which stability metrics aim to address. However, we believe

that the metrics chosen by the authors may overlook practical

relevance, particularly in downstream applications. For instance,

in drug discovery, metrics like synthetizability and novelty might
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provide more valuable insights. Yet novelty can be questioned, as

explained below, and synthesizability is hard to evaluate.

Moreover, it appears that evaluation metrics must currently be

tailored to the specificities of each dataset. Finding a metric that ap-

plies well to both QM9 and GEOM-Drugs seems indeed particularly

difficult. As noted in Appendix C of the paper, novelty is not mean-

ingful on QM9 since this dataset is the exhaustive enumeration of all

molecules that satisfy a predefined set of constraints. In this context,

high novelty scores would suggest that the model somehow fails to

capture some properties of the training data. Conversely, molecule

stability is of limited relevance on GEOM-Drugs, where only 2.8%

of molecules are stable as reported in Table 2. This raises questions

about the relevance of molecule stability as a performance metric

for drug discovery applications, and it could be argued that validity,

as measured by RDKit, would be more appropriate in that case. It is

less strict and more flexible than molecule stability, accepting less

conventional structures such as carbon monoxyde (CO).

Table 2: Metrics on QM9 and GEOM-Drugs

Metric QM9 GEOM-Drugs

Atom Stability 99.0% 86.5%

Molecule Stability 95.2% 2.8%

4.4 Scalability
One notable limit of EDM is its scalability with respect to the maxi-

mal number of atoms in the molecules of the training dataset. This

is due to the fact that the latent states given as input to the EGNNs

are modeled as fully-connected graphs, which requires message

passing between all the nodes of the graph. Thus, the computa-

tional cost of computing the output of an EGNN is quadratic in the

number of atoms in the molecule.

One potential solution is to limit the size of the molecules by han-

dling hydrogens implicitly. This drastically reduces the maximal

number of nodes in the graphs on both QM9 and GEOM-Drugs,

as shown in Table 1. However, this simplification might limit the

model’s ability to handle applications where explicit hydrogen in-

teractions, such as hydrogen bonding or protonation states, are

significant.

Another possible solution would be to limit message-passing oper-

ations by avoiding fully-connected latent graphs (e.g., restricting

messages to bonded atoms). But this would be impractical, as denois-

ing latent states requires capturing relationships between distant

atoms.

This scaling issue leads to long training times for EDMs, often span-

ning several days for the models described in the paper. This made

us wonder whether scaled-down models could maintain great per-

formance on stability metrics. To explore this, we decided to train

smaller versions of EDM and GDM on QM9 with fewer iterations.

The number of layers and hidden dimension used are provided in

Appendix D, along with comparisons to the reference EDM. The

stability results obtained with our models are summarized in Table

3. While our models are significantly outperformed by the refer-

ence EDM from the paper, we were surprised by the ability of EDM

to generate valid atoms at such small scales. Notably, our small

EDM yields similar results as the E-NF model introduced in [9],

which had significantly more parameters . This demonstrates that

even with fewer parameters, EDMs outperform E-NFs for molecule

generation.

Table 3: Atom and molecule stability of 𝑁 = 10
4 samples

generated by our small GDM and EDM

Atom stab. (%) Mol. stab. (%)

Small GDM 46.5% 0.0%

Small EDM 82.3% 4.8%

4.5 The Impact of Equivariance
Our trained EDM and GDM gave us a more intuitive feeling of

how the equivariance constraint makes EDMs learn the denoising

process better than GDMs. While the equivariance property is

justified by chemistry arguments, it is not clear how imposing it

to the model architecture would improve performance. Indeed, the

EGNN architecture could be less expressive than its non-equivariant

counterpart, since the operations allowed on 3D coordinates are

limited. To better visualize what happens, we show in Figure 12

examples of the denoising processes learned by our EDM and GDM

at early training epochs.

Figure 12: Examples of denoising at selected late time steps
of our small EDM (top) and GDM (bottom) after 50 epochs

From this Figure, it seems that the restriction imposed by (9) on

the evolution of 𝑧𝑥𝑡 during the denoising process helps the EDM

find chemically valid structures more easily. Atoms which are not

connected by bonds seem to be "pulled" away from each other,

which is not the case for our GDM. This justifies our interpretation

of Equation (9) as the operation of a "force" on an atom.

While this experiment highlights the benefits of imposing equivari-

ance for a low number of iterations on a small dataset, equivariant

models may not perform as well when trained longer on larger

datasets. Equation (9) imposes a strong restriction on the way 𝑧𝑥𝑡
evolves during the denoising process, which helps the model make

correct predictions when it has been exposed to a low number of

examples. But it may be detrimental to cases where the model has

more training examples.

Conclusion
This project analyzed and extended the framework introduced by

Hoogeboom et al. in their paper "E(3) Equivariant Diffusion Models
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(EDMs) for 3D molecule generation". EDMs demonstrated state-

of-the-art performance in generating stable and diverse molecules,

significantly outperforming previous methods on both QM9 and

GEOM-Drugs.

Our experiments revealed that the model performed surprisingly

well even for large molecules in terms of stability and novelty. This

is a promising outcome for practical applications in drug discovery.

However, the generated molecules occasionally display chemically

infeasible structures, such as small cycles or stressed configurations,

which are less frequent in the training dataset. These issues arise

from the coordinate diffusion process, which does not fully account

for chemical bonding properties or steric constraints.

To address scalability challenges, we experimented with reducing

the number of equivariant layers. Even with fewer parameters, the

equivariant model outperformed its non-equivariant counterpart

in atom and molecule stability. This highlights the importance and

relevance of equivariance in the design of generative models.

In conclusion, while EDMs represent a major advancement in 3D

molecule generation, challenges remain in scaling the method to

larger molecules and datasets, as well as ensuring the practical va-

lidity of generated structures. Future work should focus on refining

the generative process to better incorporate chemical properties,

while also addressing the computational demands of handling larger

and more complex molecular systems.

References
[1] Simon Axelrod and Rafael Gómez-Bombarelli. 2022. Geom, energy-annotated

molecular conformations for property prediction and molecular generation.

Scientific Data, 9, 1, 185. isbn: 2052-4463. doi: 10.1038/s41597-022-01288-4.
[2] NiklasW.A. Gebauer,Michael Gastegger, and Kristof T. Schütt. 2020. Symmetry-

adapted generation of 3d point sets for the targeted discovery of molecules.

(2020). https://arxiv.org/abs/1906.00957 arXiv: 1906.00957 [stat.ML].
[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion proba-

bilistic models. (2020). https://arxiv.org/abs/2006.11239 arXiv: 2006.11239

[cs.LG].
[4] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling.

2022. Equivariant diffusion for molecule generation in 3d. (2022). https://arxiv

.org/abs/2203.17003 arXiv: 2203.17003 [cs.LG].
[5] Greg Landrum. 2013. RDKit: Open-source cheminformatics. Journal of Chem-

informatics, 5, 33. doi: 10.1186/1758-2946-5-33.
[6] Joshua Mitton, Hans M. Senn, Klaas Wynne, and Roderick Murray-Smith. 2021.

A graph VAE and graph transformer approach to generating molecular graphs.

CoRR, abs/2104.04345. https://arxiv.org/abs/2104.04345 arXiv: 2104.04345.

[7] Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. 2023. Moldiff: addressing

the atom-bond inconsistency problem in 3d molecule diffusion generation.

(2023). https://arxiv.org/abs/2305.07508 arXiv: 2305.07508 [q-bio.BM].
[8] Raghunathan Ramakrishnan, Pavlo Dral, Matthias Rupp, and Anatole von

Lilienfeld. 2014. Quantum chemistry structures and properties of 134 kilo

molecules. Scientific Data, 1, (Aug. 2014). doi: 10.1038/sdata.2014.22.
[9] Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner,

and Max Welling. 2022. E(n) equivariant normalizing flows. (2022). https://arxi

v.org/abs/2105.09016 arXiv: 2105.09016 [cs.LG].
[10] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2022. E(n) equi-

variant graph neural networks. (2022). https://arxiv.org/abs/2102.09844 arXiv:

2102.09844 [cs.LG].

A Precisions on Diffusion Models
We provide additional information on the diffusion model from

2.1.1.

Diffusion Process: A common schedule for the parameters 𝛼𝑡 and

𝜎𝑡 is the variance preserving process, which links them as follows:

𝛼𝑡 =

√︃
1 − 𝜎2𝑡 . Usually, 𝛼𝑡 is defined as a function that gradually

decreases from 𝛼0 ≈ 1 to 𝛼𝑇 ≈ 0 throughout the noising process.

Regarding the transition probabilities between two latent states 𝑧𝑠
and 𝑧𝑡 , for 𝑠 < 𝑡 , the analytical formulas are given by :

𝑞(𝑧𝑡 |𝑧𝑠 ) = N(𝑧𝑡 |𝛼𝑡 |𝑠𝑧𝑠 , 𝜎2𝑡 |𝑠 𝐼 )

with 𝛼𝑡 |𝑠 = 𝛼𝑡/𝛼𝑠 and 𝜎2𝑡 |𝑠 = 𝜎2𝑡 /𝜎2𝑠 .

Denoising Process: The mean 𝜇𝑡→𝑠 and standard deviation 𝜎𝑡 |𝑠
of the true denoising process between latent states 𝑧𝑠 and 𝑧𝑡 are :

𝜇𝑡→𝑠 (u) =
𝛼𝑡 |𝑠𝜎

2

𝑠

𝜎2

𝑡

𝑧𝑡 +
𝛼𝑠𝜎

2

𝑡 |𝑠
𝜎2

𝑡

u and 𝜎𝑡→𝑠 =
𝜎𝑡 |𝑠𝜎𝑠
𝜎𝑡

B Variational Lower Bound
The evidence lower bound (ELBO) is a variational approach to opti-

mizing the log-likelihood of the training dataset given the model.

log𝑝 ( [𝑥, ℎ]) ⩾ L𝑇 +
𝑇∑︁
𝑡=1

L𝑡 + L0 (10)

This formulation divides the loss into three components:

• L𝑇 measures the KL divergence between the prior 𝑝 (𝑧𝑇 ) and
the forward process posterior𝑞(𝑧𝑇 | [𝑥, ℎ]). In practice, it is close
to zero when the noising schedule is defined such that 𝛼𝑇 ≈ 0.

• L𝑡 compares 𝑞(𝑧𝑡−1 |𝑧𝑡 , [𝑥, ℎ]) (a tractable forward process pos-
terior) with the reverse process model 𝑝 (𝑧𝑡−1 |𝑧𝑡 ).

• L0 is a reconstruction term for [𝑥, ℎ] given 𝑧0. In practice, if

𝛼0 ≈ 1 and 𝑥 is discrete, then L0 is close to zero

The optimization thus focuses on L𝑡 . In our formulation, the net-

work predicts 𝜖 = 𝜙 (𝑧𝑡 , 𝑡), from which we can compute [𝑥, ˆℎ], by
[𝑥, ˆℎ] = (1/𝛼𝑡 )𝑧𝑡 − (𝜎𝑡/𝛼𝑡 )𝜖 . Then, the bound L𝑡 becomes:

L𝑡 = E𝜖∼N(0,I)

[
1

2

(1 − SNR(𝑡 − 1)/SNR(𝑡)) ∥ 𝜖 − 𝜖 ∥2
]
. (11)

In practice, the factors 1 − SNR(𝑡−1)
SNR(𝑡 ) are set to 1 during training.

C Structure of Equivariant Graph Neural
Networks

We provide schematic representations of the operations performed

by the Equivariant Graph Convolutional Layers used in the EGNNs.

These are shown in Figures 13, 14 and 15.

D Details on our Smaller EDM and GDM
We give some details regarding the experiment presented in 4.4.

Our smaller EGNN and GNN are made of 2 layers with 64 hidden

features, and were trained for 500 epochs on QM9 using a batch size

of 64 (which represents about 780000 iterations). In comparison, the

EDM trained on QM9 provided by the authors had an EGNN with

9 layers of 256 features each, and the E-NF introduced in [9] had 6

layers with 64 hidden features. For our small models, the diffusion

process is of length 𝑇 = 100, while the EDM in [4] has 𝑇 = 1000.

The training of our models required around 6 hours on a single

NVIDIA RTX A2000 GPU. In comparison, the authors report that

training their EDM on QM9 with explicit hydrogens for 1.7 mil-

lion iterations took them 7 days, while training it for 1.2 million

iterations on GEOM-Drugs took 5.5 days.

We tested our models every 10 training epochs, and saved the one

with the best validation loss.
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Figure 13: Representation of the EGCL’s edge update operation

Figure 14: Representation of the EGCL’s node update operation

Figure 15: Representation of the EGCL’s coordinate update operation
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